
The Definitive Guide to Observability in Kubernetes

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Introduction
If you’re a seasoned IT professional — or just someone who paid attention in IT Ops 101 — you may think you
know the ins and outs of observability. And you probably do, at least when you are dealing with conventional
application environments, like virtual machines.

When it comes time to monitor and manage a Kubernetes cluster, though, even a seasoned IT pro can quickly
start to hate life. Kubernetes is a unique beast, and achieving observability for K8s is a daunting task even for
the best and brightest among us. Although the famous “pillars of observability” — logs, metrics and traces
— remain relevant in Kubernetes, simply collecting
and analyzing these data points is hardly enough
on its own to deliver the observability you need to
understand what’s really happening in your clusters.

That’s because a Kubernetes cluster is a complex,
multi-layered, ever-changing web of resources and
services. Full observability in this context requires
not simply collecting logs, metrics and traces from
individual applications and services within the
cluster, but also relating these various data points
together in a way that helps you understand the
complex events taking place deep within your
clusters. In addition, teams should think beyond just logs, metrics and traces by collecting all of the data
available to them, including from sources like the CI/CD pipelines that feed into their K8s clusters and the
GitOps workflows that drive them.

Kubernetes is a unique
beast, and achieving
observability for K8s is a
daunting task even for
the best and brightest
among us.

When it comes to Kubernetes observability, in other words, correlation of each and every data source available
is the real kicker. It’s what separates mere monitoring from complete, actionable insight into the monster that
we call K8s.

On top of all of this, simply accessing
observability data in Kubernetes is a
challenge to many admins. Kubernetes
doesn’t expose logs, traces and
metrics in the way that conventional
applications and operating systems
do. It demands more effort on the part
of the IT team to get basic observability
information, let alone make sense of
that information.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Everything you’ve always wanted to know about K8s
observability
We know there’s a steep learning curve to Kubernetes observability, and we want to help you overcome it.
We’ve prepared this eBook to guide Kubernetes admins as they implement observability solutions for their
clusters.

The following pages explain everything you’ve always wanted to know about Kubernetes observability, but
were probably afraid to ask (because — let’s face it — who these days wants to admit not being a K8s guru?).
The eBook walks through the key challenges associated with monitoring and managing Kubernetes clusters,
then offers concrete tips for overcoming them.

As we’ll see, achieving true observability for Kubernetes requires not just updating your tools and processes,
but also rethinking the very meaning of observability — which, in a fast-changing Kubernetes cluster, entails
something quite different than it does in a static application environment.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

To get this data, you need to look in multiple locations. Some of it, like cluster-level metrics data, can be
accessed through APIs provided by Kubernetes itself. Other data, such as application logs, must be collected
from inside containers (unless the applications include logic to stream logs directly to an external location,
which they probably don’t unless you spent a long time refactoring them just for this purpose). The operating
system logs stored on individual master and worker nodes are another important source of observability, too.

We could go into more detail here about exactly where
to find which types of data within a Kubernetes cluster
and how to access it manually on the CLI. But we won’t,
not only because we want to spare you from death by
kubectl commands, but also because we believe that
the best Kubernetes observability strategy hinges on
deploying a solution that can automatically collect
and correlate observability data from any and all
available sources. Admins shouldn’t have to set up log
streams manually, juggle long kubectl commands or
SSH into individual nodes to get observability data.

Observability solutions that automatically collect the
data you need mean you can stop focusing on the
tedium of Kubernetes logs and metrics collection,
and turn your attention to the bigger picture: How
to transform the data that Kubernetes gives you into
actionable information that helps you optimize the
performance of every part of your cluster.

Kubernetes observability 101
Let’s begin with an overview of which types of observability data you can collect from a Kubernetes environment
and where it all comes from.

Fortunately, the sources of K8s observability are simple enough. The types of data available from Kubernetes
are essentially the same as those you’d focus on in any typical application environment:

Logs: Logs are produced by some components of Kubernetes itself. In addition, applications running
inside pods within a Kubernetes cluster usually generate log data in the same way that they would
when running directly on a server.

Metrics: Kubernetes exposes cluster-level metrics data about resource consumption. You can also
collect this type of data from individual nodes.

Traces: You can perform traces in Kubernetes just as you can in any type of environment. Traces
allow you to map interactions between different services and resources in order to identify the root
cause of a failure or event.

^
^

^

Data Type Data source or
location

Cluster-level resource
metrics

Metrics API

Cluster-level logs
(Kube-apiserver,

Kube-scheduler, etc.)

Master node(s) file
system

Application logs

Containers (export
logs to persistent
storage to retain

them)

Operating system
logs (from master and

worker nodes)
Node file system

Key observability sources in Kubernetes

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

The Kubernetes observability dilemma
The term observability may have become buzzworthy as of late, but the concepts behind it are hardly new.
For years, developers, IT engineers and DevOps teams have been accustomed to integrating logs, metrics
and traces in order to understand trends and problems within their applications.

What makes life for K8s admins hard, however, is that simply lifting and shifting traditional observability
paradigms into Kubernetes does not work well, for several reasons.

Multiple components

For starters, Kubernetes is not a single entity, but rather a complex collection of distinct services. It includes
an API server, a controller, a key-value store and a network proxy, to name just some of the key components.

On top of this, every Kubernetes cluster consists of multiple layers of infrastructure. There are containers,
which run in pods, which run on nodes. There are host operating systems running on the nodes. There may or
may not be hypervisors in the mix, too, depending on whether you use bare-metal servers or virtual machines
to power your nodes. Add in multiple namespaces, storage volumes and network plugins, and the multi-
layered infrastructure behind each Kubernetes cluster becomes truly dizzying.

What all of this means is that there is not a single set of logs, metrics or traces to manage in Kubernetes.
Each component of the cluster and infrastructure generates its own observability data, which needs to be
collected separately and then — most importantly — correlated in a way that displays the complete context
of each event or change to an admin who needs to understand it. Traditional observability solutions that are
designed for one application running on one server don’t work well in Kubernetes.

sched
schedsched

CONTROL PLANE

etcd

KUBERNETES CLUSTER

api
api

api

c-c-m
c-c-m

c-c-m
c-m

c-m
c-m

NODENODE

kubelet

k-proxy

NODE

kubelet

k-proxy

kubelet

k-proxy

Control plane

Scheduler
sched

kubelet
kubelet

kube-proxy
k-proxy

Controller
manager c-m

(persistence store)
etcd

etcd

Node

Cloud controller
manager

(optional) c-c-m

API server
api

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Dynamic environments: Pets vs. cattle

Not only are Kubernetes clusters highly complex, but they are also
constantly changing. Container instances spin up and down in
response to fluctuations in demand. Pods terminate on one node
and move to another depending on factors like scheduling priorities
and node availability. The mappings between storage volumes
and individual containers may change depending on storage
requirements. And so on.

Traditional infrastructure is not so dynamic. A virtual machine may
boot up or shut down periodically, but this typically doesn’t happen
frequently. Virtual machines also rarely move from one host server
to another. The data inside a virtual disk may change frequently, but
the disk’s location on the network typically won’t. Virtual machines, in
other words, are treated like “pets”: Each one is a unique entity that
is managed with care.

In contrast, Kubernetes treats resources like “cattle.” They are immutable resources that the system constantly
moves around, terminates and restarts. Because of the ever-changing nature of a Kubernetes cluster, you
can never assume that logs, metrics or traces collected at one point in time represent the state of the cluster
at another point in time. Nor can you assume that a log stream or metrics stream that you configure initially
will continue to provide observability on an ongoing basis.

Instead, you need to manage observability continuously and in true real time — while simultaneously
maintaining the ability to reference historical observability data to inform ongoing observability operations,
even if the historical data no longer reflects the current state of your cluster or resources.

Rapid application deployment

The applications running inside Kubernetes containers and pods change constantly, too. If you continuously
deliver new application versions — which you probably do if you use Kubernetes, because Kubernetes goes
hand-in-hand with continuous delivery and DevOps — your application versions may change from one hour
to the next. The resources they consume could change, too, as you roll out new features or optimizations.

This wouldn’t be a challenge if
Kubernetes logs and metrics clearly
distinguished between different
application deployments and versions.
But they don’t. Mapping application
state to Kubernetes cluster state is an
exercise that K8s leaves to the user. To
pull it off efficiently, you must track data
about application state, then use that
data to contextualize the rest of your
Kubernetes observability insights.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Abstract data sources

A final key observability challenge in Kubernetes (which we hinted at above) is that Kubernetes doesn’t expose
observability data in a straightforward way. Kubernetes itself does not generate any master log file that you
can simply tail in order to keep track of the cluster. Users need to ingest log data from multiple sources in
order to obtain full visibility into logs. Kubernetes does offer a metrics API, but collecting metrics from it is an
exercise that Kubernetes leaves to the user, too: There is no built-in Kubernetes tooling for metrics streaming.

Likewise, at the application level, logs are not
aggregated within a central location by default.
Applications running inside containers and pods
instead write log data to their various internal
environments. You need to export the data to a
centralized persistent location if you want to use it
for observability purposes. And because a container
could live for only a matter of seconds, you need to
export the data continuously and in real time if you
want full visibility. Even if you check container logs
as frequently as every minute, you may miss data
sources that don’t persist in their original location
for that long.

Kubernetes itself does not
generate any master log file
that you can simply tail in order
to keep track of the cluster.
Users need to ingest log data
from multiple sources in order
to obtain full visibility into logs.

Kubernetes
Node1

App1 Pod App2 Pod

Kubernetes
Node0

App1 Pod

Node0

NodeN

App2 Pod

Kubernetes
NodeN

App1 Pod App2 Pod

FLUENTD

FLUENTD

FLUENTD

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

The 4 sins of Kubernetes observability
How does a Kubernetes admin work through the observability roadblocks and challenges described above?
We’ll explain later in this eBook. But first, let’s take a look at how not to address these issues. It’s easy to fall
into various traps — you might even call them sins — in your quest to make Kubernetes observability work.
We want to be sure you avoid the common pitfalls and stick to the straight and narrow way on your journey
toward K8s observability salvation.

1. Don’t just aggregate logs

It can be tempting to attempt to solve Kubernetes observability challenges by collecting all of the log data
you can — from your master nodes, worker nodes, containers and the underlying physical infrastructure
— and then aggregating all of that data in the mistaken belief that analyzing it will give you the holistic
visibility you need.

The problem with this approach is that every component in your cluster logs different types of information
at different rates. As a result, if you look at aggregated log data from a specific point in time — say, the
moment that a pod crashed — you are unlikely to gain the complete context you need to understand
what happened. The events that caused the pod to crash may have occurred in different components at
an earlier time, but you probably won’t see that by looking just at aggregated log data based on a single
event.

2. Don’t focus on metrics alone

Collecting metrics data from the Kubernetes metrics API is another tempting way to attempt to gain
across-the-board visibility into your cluster. After all, the metrics API covers the entire cluster, and it
exposes critical data like CPU and memory usage.

Those are useful sources of visibility, and they should be part of any Kubernetes observability strategy.
On their own, however, they are hardly enough to understand the state of your cluster. Focusing just
on cluster-level metrics would be like trying to monitor a virtual machine based solely on the CPU and
memory metrics of the physical server that hosts it: It would give you some clue as to what is happening
inside the virtual machine, but not the level of detail necessary to gain true observability.

Instead, you need context — which depends on the correlation of data of multiple types from across your
cluster — to understand what is happening.

You need context — which depends on the correlation of data of multiple
types from across your cluster — to understand what is happening.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

3. Don’t focus just on applications

On the opposite end of the spectrum, you might
decide to ignore cluster-level metrics and focus
just on the logs, traces and metrics you can get
from applications running in Kubernetes. That
data is straightforward to collect if you use a so-
called sidecar container to stream application
data to an external monitoring tool.

The fallacy in this approach is obvious enough:
If you look only at application-level observability
data, you can’t know how changes in the cluster
— such as the failure of a node or the exhaustion of storage volume capacity — impacts your applications.
It’s only by contextualizing application data with cluster data, and vice versa, that you can begin to
understand what is actually happening at all layers of your environment.

You shouldn’t stop with those data sources, by the way. Complete observability means bringing data that
is external to your cluster and applications — things like CI/CD pipeline metrics — into the picture, too.

4. Don’t rely on your managed Kubernetes service

If you run Kubernetes on a managed platform, such as Amazon Elastic Kubernetes Service or Azure
Kubernetes Service, you may believe that you don’t need a sophisticated observability strategy at all
because your Kubernetes service will send you alerts when something goes wrong. After all, the vendor
probably promises that its managed K8s platform is pain-free, so you don’t need to worry about
observability for it, right?

Not quite. The reality is that, although
managed Kubernetes services
typically offer basic alerting and
monitoring functionality as built-in
platform features, they focus mainly
on notifying users about critical
disruptions, not overall performance
management. If you want a more
nuanced level of observability,
such as understanding how a new
application deployment performs
relative to a previous version, you’ll
need to collect, correlate and
analyze the necessary data yourself.

It’s only by contextualizing
application data with cluster
data, and vice versa, that you
can begin to understand what
is actually happening at all
layers of your environment.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Kubernetes observability nirvana
The Kubernetes observability sins described above reflect efforts to lift-and-shift conventional observability
strategies to fit Kubernetes. That doesn’t work. To be truly effective, Kubernetes observability requires a
different approach.

As we’ve already noted, logs, metrics and traces remain the foundation of Kubernetes observability, just as
they are in any type of environment. But understanding the what, when and why of a Kubernetes cluster
means going further than simply collecting logs, metrics and traces.

Context and data correlation

Above all, understanding what is happening in a
Kubernetes cluster requires the ability to contextualize
every individual event based on what is happening in
the rest of the cluster at the time the event occurs — as
well as what was happening leading up to the event.

For instance, if a pod is terminated on one worker node
and restarted on another, you need to know what
was happening concurrently on the worker nodes, the
master nodes, your Kubernetes services and so on in
order to gain a full picture of why the change happened
and what its implications could be. If cluster CPU usage
spikes, you must be able to determine the state of each
container, pod and node during the spike in order to
identify the source of the event.

To put this another way: Collecting and analyzing logs, metrics and traces from individual parts of your cluster
isn’t enough. You need to be able to aggregate and relate observability data from multiple sources to gain a
holistic understanding of events.

Historical observability

An event that impacts one part of your Kubernetes environment at one moment in time could be caused
by something that happened on a different component at an earlier point in time. Understanding the
relationship between the events requires the ability to reconstruct what happened in the past and map
historical developments to the current state.

For example, imagine a pod that begins consuming more resources than expected. You likely won’t notice
the change until the pod’s resource consumption surpasses a certain threshold, even if the root cause of
the behavior lies in an historical event, such as the deployment of a new application version. It’s only by
reconstructing the historical timeline that produced the current state of the pod that you’ll know why the
change in behavior occurred.

To gain the deepest level of historical observability in Kubernetes, it’s helpful to track changes over time in the
form of a changelog. By recording each change in state for each resource and service in your environment,
you can construct a continuous changelog that allows you not only to understand historical events, but also
to trace how historical changes impact the current state of your cluster.

Collecting and analyzing
logs, metrics and traces from
individual parts of your cluster
isn’t enough. You need to be
able to aggregate and relate
observability data from multiple
sources to gain a holistic
understanding of events.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Overall environment state

To be sure, you’ll sometimes need to drill down into individual components of your Kubernetes environment
— certain pods, nodes or services — to understand their behavior in isolation.

But your overall focus should be on the state of your cluster as a whole. Don’t try to monitor individual
components in isolation in the hope that, collectively, they’ll provide across-the-board observability. Instead,
focus on the state of your cluster as a whole by default, and drill down into specific components when
necessary.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

Achieving Kubernetes observability with Observe Inc.
There is no shortage of observability solutions for Kubernetes. Some of them are pretty good at certain
aspects of Kubernetes management. Most, however, are monitoring or logging tools that attempt to extend
conventional observability features into a Kubernetes cluster — which, as you know if you’ve read this far,
works about as well as eating soup with chopsticks.

Observe Inc. takes a different approach. Observe was designed from the start to thrive in conjunction with
cloud-native technologies like Kubernetes. Rather than assuming that Kubernetes environments can be
observed in the same way as static environments, or focusing only on one layer of observability (such as
cluster-level metrics or application metrics), Observe takes a dynamic, holistic approach to Kubernetes
observability.

Deploying Observe in Kubernetes is as simple as running a single kubectl command (after all, as we said
above, we don’t think having to run kubectl commands all day is good for one’s health). From there, Observe
does the dirty work. It automatically collects logs, metrics and traces from all layers and components of your
cluster, then uses that data to track the overall state of your environment on a continuous basis. You don’t
need to worry about deploying multiple agents or aggregating different logs manually.

Observe gives admins the power to drill down into a single component if they want, but it also performs
holistic data correlation to expose the state of the environment as a whole. You can, for example, track which
pods were using which storage volumes at which times, or how container image versions changed within a
given pod over time, without having to write complex queries that stitch different logs together.

And because Observe maintains a complete changelog of all events in your cluster, you can easily reconstruct
the state of your environment from any point in time. There’s no need to wade through historical log data
manually in order to understand the past. Observe keeps track of the past for you, while at the same time
providing real-time visibility into the present.

THE DEFINITIVE GUIDE TO OBSERVABILITY IN KUBERNETES - ©2021 OBSERVE INC.

See for yourself by requesting product access:
https://www.observeinc.com

Observe isn’t just for Kubernetes. It’s designed for any type of environment, and it can ingest
data from any type of source, ranging from traditional infrastructure to CI/CD pipelines, Git
workflows, session data and even ticketing systems. But for teams that are grappling to
conquer the unique challenges of Kubernetes observability, Observe delivers holistic, fully
contextualized insights in a way that other platforms simply can’t.

https://www.observeinc.com

